MASIGNASUKAv102
6510051498749449419

Periodic Table[आवर्त सारणी]

Periodic Table[आवर्त सारणी]
Add Comments
Sunday, 10 May 2020

Introduction

We have more than 109 elements. To study each element, its isolation, physical and chemical properties would be an arduous task. A systematic arrangement of the element according to their electronic configuration and thereafter to study their properties both physical and chemical forms the hallmark of this chapter. Elements are classified according to groups and periods for a better understanding of the properties of the elements.

Significance and Brief History of the Development of Periodic Table

The elements are the basic units of all types of matter. Only 31 elements were known in 1800. Now more than 105 elements are known. It is impossible to remember the properties of each element and its compounds. Therefore, many attempts have been made to classify elements into fewer groups. The purpose of the classification has been to make the study of the chemistry of elements and their compounds easier. Dmitri I. Mendeleev (1834-1907) developed the periodic table. From the relationships embodied in the table, he predicted the existence as well as properties of elements then unknown. These predictions came out to be amazingly accurate.  During the course of time, the basis of classification changed from atomic mass to the atomic number.
The study of chemistry has become simple on the basis of the modern classification of elements. Now, by knowing the properties of one element of a group, it is possible to predict the properties of the other members. One need not remember all the properties of elements or their compounds. All one has to do is to know the trends of properties in a group and in a period of the periodic table.

Brief History of the Development of Periodic Table

In 1829, Döbereiner suggested that elements could be arranged in groups of three i.e. triads, in which the atomic weight of the middle element was nearly the mean of the atomic weights of the other two. However, only a limited number of electrons could be grouped into these triads.  
 Dobereiner's Triads of Elements
Triads
Mean atomic weight
Lithium (7)Sodium(23)Potassium(39)(7+ 39)/2 = 23
(Li)(Na)(K)
Calcium (40)Strontium (87.5)Barium (137.5)(40 +137.5)/2 = 88.75
(Ca)(Sr)(Ba)
Phosphorus (31)Arsenic (76)Antimony (120)(31 + 120)/2 = 75.5
(P)(As)(Sb)
Sulphur (32)Selenium (79)Tellurium (127.5)(32+ 137.5)/2 = 79.25
(S)(Se)(Te)
Chlorine (35.5)Bromine (80)Iodine (127)(35.5 + 127)/2 = 81.25
(Cl)(Br)(I)

John A.R. Newlands, in 1865-1866, reported that if the elements were arranged in order of their increasing atomic weights, the eighth element starting from a given one, possessed properties similar to the first, like the eighth note in an octave of music. He called it the law of octaves. It worked well for the lighter elements but failed when applied to heavier elements. In 1869, J. Lothar Meyer in Germany and Dmitri I. Mendeleev in Russia, working independently, gave a more detailed and accurate relationship among the elements. Lother plotted atomic volumes (=atomic mass/volume) versus atomic weights of elements and obtained a curve. He pointed out that, elements occupying similar positions in the curve possessed similar properties.

Mendeleev's Periodic Table

In March 1869, Mendeleev gave his famous scheme of the periodic classification of elements. "It states that the properties of the elements are the periodic functions of their atomic weights.

Mendeleev arranged all the elements known at that time in horizontal rows in order of increasing atomic weights. He left some gaps in the table for undiscovered elements and also predicted their properties. Eventually, when these elements were discovered, it was amazing to find that they fit correctly in the table. For example, as can be seen in Mendeleev's original periodic table there are two gaps between zinc (group II) and arsenic (group V). As these undiscovered elements were to follow aluminium and silicon, Mendeleev named them eka-aluminium and eka-silicon. When these elements, now known as gallium (eka-aluminium) and germanium (eka-silicon), were discovered, their properties were agreed very well with those given by Mendeleev.

Mendeleev's prediction for eka-aluminium (Gallium)

PropertyEka-aluminium (Ea) predicted in 1871 by MendeleevGallium (Ga)
Reported in 1875Currently accepted
Atomic mass/amu6869.969.72
Density, r/ /g cm-25.95.945.904
Melting point, T/KLow303.15302.78
Solubility in acid and alkaliEa will dissolve slowly in both acid and alkaliGa dissolves slowly in both acid and alkaliGa dissolves slowly in both acid and alkali
Formula of oxideEa2O3Ga2O3Ga2O3 ((a and b forms)
Density of oxide r /g cm-25.5-6.44 ((a form) and 5.883 (b form)
Reactions of sulphateEa2(SO4)3 will form alumGallium forms alumsGallium forms alums, e.g. (NH4)2SO.Ga (SO).24HO
Preparation of SulphideEa2S3 will be precipitated by H2S or (NH4)2SGa2S3 is precipitated by H2S or (NH4)2SGa2S3 is precipitated by H2S or (NH4)2S
Properties of chlorideEaCl3 will be more volatile than ZnCl2GaCl3 is more volatile than ZnCl2GaCl3 is more volatile than ZnCl2
Mendeleev's prediction for eka-silicon (Germanium)
PropertyEka-silicon (Es) predicted in 1871 by MendeleevGermanium(Ge)
Reported in 1886 by Bioshaudrancurrently accepted
Atomic mass/ amu7272.3272.59
Density, /g cm-35.55.475.35
Melting point, T/KHigh-1220
Specific heat capacity, c/J g-10.30510.31770.3903
Molar Volume, Vm/ cm31313.2213.5
ColourDark greyGreyish whiteGreyish white
Valence444
Reaction with acids and alkalisES will be slightly attacked by acids but will resist attack by alkalisGe is dissolved by neither HCl nor NaOH, but dissolved by conc. NaOHGe is dissolved by neither HCl nor NaOH, but dissolved by conc. NaOH
Boiling point of tetraethyl derivative, T/K433433458-460
Density of the dioxide, /g cm-34.74.74.2
Density of the tetrachloride, /g cm-31.91.8871.844
Boiling point of the tetrachloride, T/K373359357

Modern Periodic Law and Present Form of Periodic Table

According to the modern periodic law, the properties of the elements and their compounds are a periodic function of their atomic numbers. Thus, in the modern periodic table, atomic number (which is equal to the nuclear charge) forms the basis of the classification of elements.

Present Form of Periodic Table

There are several forms of the periodic table. The most popular version is the long form. In that table, there are seven horizontal rows called periods. Each period starts with a new principal quantum number, n, and the electrons are filled up in orbitals according to the Aufbau principle. The first period has two elements, hydrogen (1s1), and helium (1s2), and the first shell (K) is completed. The second period starts with n = 2 and has eight elements. Starting with lithium (2s1), it ends with neon (2s2 2p6) and thus completes the second shell (L). In the third period, shell M starts getting filled, (n=3), and also contains eight elements. It starts with sodium (3s1) and completes at argon (3s2 3p6).

Long form of the periodic table of the elements with their atomic numbers and ground state electronic configurations (according to the latest 1984 IUPAC recommendation)

In contrast to the second period, the outer shell is not completely filled in with elements of the third period, and the orbitals of the 3d subshell remain vacant. Elements in which the s subshell is filled are called s-block elements and those in which the p subshell is filled are known as p-block elements.

In the fourth period, the N shell (n = 4) starts filling with potassium (4s1) and is completed with krypton (4s24p6). It has 18 elements, i.e. ten more than in the third period. This is because of the elements in which the filling up of electrons in the 3d orbitals takes place after 4s orbital but before 4p orbitals:
21Sc 1s2 2s2 2p6 3s2 3p6 3d1 4s2
22Ti 1s2 2s2 2p6 3s2 3p6 3d2 4s2
.
.
.
.
.
.
30Zn 1s2 2s2 2p6 3s2 3p6 3d10 4s2

Elements whose d orbitals are filled are called d-block elements. In d-block elements of the fourth period, the M shell is filled until it contains 18 electrons. Similarly, the fifth period (n = 5) has 18 elements. It starts with rubidium (5s1) and ends with xenon (5s2 5p6). The sixth period (n = 6) contains 32 elements in which the electrons enter in 6s, 4f, 5d and 6p orbitals, in that order. It begins with two s elements (Cs and Ba) followed by lanthanum (La) in which the d orbitals of the penultimate shell begin to be filled. But immediately after this, we have 14 elements (58Ce to 71Lu) in which 4f orbitals are in the process of getting filled. Then, the 5d orbitals are filled (from 72Hf to 80Hg) and finally, the period ends with six p block elements (81Tl to 86Rn). The seventh period (n = 7) contains two s block elements (87Fr and 88Ra), followed by a d block elements actinium (89Ac), and 14f block elements (90Th to 103Lr) and again ends with d block elements (Z = 104 to 107). This is an incomplete period.

The vertical columns in the periodic table are called groups or families of elements. According to the latest IUPAC (International Union of Pure and Applied Chemistry) recommendation, the groups are numbered from 1 to 18.

Types of Elements

The elements can be classified into four types depending on their electronic configurations (Table 5.4). Thus, we have:
  1. Noble gases
  2. Representative elements (s-and p-block elements)
  3. Transition elements (d-block elements)
  4. Inner transition elements (f-block elements)

Noble Gases

Noble gases constitute group 18 of the periodic table. Except for the first element of the group, helium (which has 1s2 configuration) all other elements, namely neon, argon, krypton, xenon and radon have ns2 np6 electronic configuration in the outermost shell. Because of the stable arrangement of electrons in these elements, they exhibit a very low chemical reactivity.

Representative Elements

Elements belonging to group 1 (alkali metals; Li ... Fr) with outermost electronic configuration ns1 and those belonging to group 2 (alkaline earth metals; Be... Ra) with outermost electronic configuration ns2 are placed in the s block. Elements of groups 13 to 17 (outermost electronic configuration varying from ns2 np1 to ns2 np5) belong to the p block of the periodic table. The elements of s and p blocks are collectively called representative elements.

Noble gases are at the end of each period of the representative elements; these are also grouped with representative elements. The chemistry of these elements depends on the number of electrons in the valence shell (outermost shell). For groups 1 and 2, the group number indicates the number of valence electrons. Subtracting 10 gives the number of valence electrons for groups 13 to 17 from the group number. 

Transition Elements

Elements belonging to groups 3 to 12 (in the middle of the periodic table) with an outer electronic configuration (n - 1) d1-10 ns1-2 constitute the d block of the periodic table and are called transition elements. In these elements, n is 4, 5 or 6 with the corresponding filling of 3d, 4d or 5d orbitals. They are all metals and are characterized by variable oxidation states, the formation of coloured ions and complexes.

Inner Transition Elements

At the bottom of the periodic table, there are two rows-one of lanthanides or lanthanide series (z = 58 to 71) and the other of actinides or actinide series (Z = 90 to 107) containing incomplete 4f and 5f orbitals respectively. They also have incomplete (n - 1) d orbitals and are characterized by the outer electronic configuration (n - 2) f1-14 (n - 1) d0-1 ns2. As in each of these series, an inner f electron is added to each element, the two series of elements are called f-block elements or inner transition elements. Among themselves, lanthanides and actinides show similar properties. All the elements of the two series are metals.

Through this periodic classification, we can organize and systematize the study of elements and their compounds. It is seen that the electronic configurations of elements are directly or indirectly related to their physical as well as chemical properties. From this classification, we can understand the cause of periodicity in properties and general trends in the behaviour of elements.

Periodic Trends in Properties of Elements

According to the modern periodic law, properties of elements are repeated at certain intervals or periods when the elements are arranged in the order of increasing atomic number. In a period, the number of valence electrons increases with an increase in atomic number. There is a repetition of similar electronic configurations in the outermost shells in a group. Therefore, in a group, properties are similar. In the long form of the periodic table, elements with the same number of outer electrons are in the same group. Moreover, there is a gradation in the properties of elements in a group. For example, all members of group 1 have one electron in the outermost shell. Properties of these elements are similar to each other. Similarly, F, Cl, Br and I have seven electrons in their outermost shells. They are chemically alike. Members of group 18 have similar electronic configurations with 8 electrons in their outermost shell (except He). All noble gases have similar properties. We shall now discuss periodic trends in some of the properties of elements.

Density, Melting Point and Boiling Point

The properties like density, melting point and boiling point also show gradation, though not very regular, in a group of the periodic table. In a period of representative elements, density increases across a period and reaches a maximum value somewhere in the middle. Melting points and boiling points increase, attain maximum values in the middle, thereafter, and begin to decline.

Ionization Energy

First ionization energy is the energy required to remove an electron from an isolated, neutral gaseous atom of an element resulting in the formation of a positive ion.
M(g) + Energy ------> M+(g) + e-
For example, Li(g) + 520 kJ mol-1 ------> Li+(g) + e-

Thus, the first ionization energy of lithium is 520 kJ mol-1. If another electron is to be removed, much more energy (called second ionization energy) will be needed.
Li+ + 7297 kJ mol-1 -------> Li2+ + e-

This is because of the fact that it is more difficult to remove an electron if the atom already possesses a positive charge. Thus, the successive values of the ionization energy of an element will show an increasing trend.

The below figure shows a plot of first ionization energies of some elements against their respective atomic numbers. Certain trends are quite evident from the plot:
  1. Noble gases occupy peaks because of their extremely stable configurations.
  2. Alkali metals possess the lowest values of ionization energy showing thereby that they are highly reactive. 
  3. In general, the values increase across a period (e.g. Li to Ne). This is due to the increasing nuclear charge and the attractive forces of the nucleus which strongly hold the electrons.
  4. Within a group (e.g. Li to Cs), ionization energies become progressively smaller as we move down the column. This is because of the fact that the outer electron, which is being removed lies farther from the nucleus and thus it becomes easier to pull it out.
Exceptions
  1. Ionisation Be > Ionisation B : The ionisation energy of Beryllium is greater than the ionisation energy of Boron due to penetration effect. Be= 1s2 2s2 & B=1s2 2s2 2p1  The S orbital is more closer to nucleus and hence require more energy !
  2. Ionisation N > Ionisation O : O= 1s2 2s2 2p4 & N=1s2 2s2 2p3 The Ionisation energy of Nitrogen is greater than the ionisation energy of oxygen due to completely half-filled and the stable electron configuration. 
General trends in ionization energies in relation to the periodic table may be depicted as shown in the figure. Ionization energy is either determined by means of a discharge tube method or by the spectroscopic method

Electron Affinity

Electron affinity is the energy released when an electron is added to an isolated atom in the gaseous state. For example,

X(g) + e- ------> X-(g) + Energy
(where X = F, energy 328 kJ/mol; X = Cl, energy = 349 kJ/mol; X = Br, energy = 324 kJ/mol; X = I, energy = 295 kJ/mol).

Halogens (elements of group 17) can take up an electron to acquire the stable noble gas configuration. Their values for electron affinity are thus very high. As we move across a period, electron affinity usually increases, and while going down a group it decreases. The electron affinity of an element is generally determined indirectly from thermodynamic data.
Although electron affinities of all the elements have not been determined, the following trends in electron affinities of some elements in the periodic table are evident.

Electron affinities generally decrease in moving down the group. This is expected on account of the increase in the size of the atom on moving down the group. Due to an increase in the size of atoms, the effective nuclear attraction for electrons decreases. As a result, there are fewer tendencies to attract additional electrons with an increase in atomic number.
In the figure electron affinities of halogens are plotted against their atomic numbers. It may be noted that contrary to expectation, the electron affinity of fluorine is lower than that of chlorine. This is because the fluorine atom has a very compact electronic shell due to its small size. The compactness of the fluorine shell results in electron-electron repulsion whenever an electron is introduced into its 2p shell. This is why its electron affinity is less than expected. In the chlorine atom, the 3p orbitals are not as compact as the 2p orbitals in fluorine atom. The chlorine atom, because of weaker electron-electron repulsion, more readily accepts the incoming electron. The electron affinity of chlorine is, therefore, higher than that of fluorine.

In the case of noble gases, the outer s and p orbitals are completely filled. No more electrons can be accommodated in these orbitals. Noble gases, therefore, show no tendency to accept electrons. Their electron affinities are zero.
Electron affinities generally increase as we move across a period from left to right. This is due to the increase in the nuclear charge, which results in greater attraction for electrons. In the second period, for example, the electron affinity has a maximum value for fluorine. The second electron affinity refers to a process in which an electron is added to a negative ion. For example

O-(g) + e- -----> O2-(g)

Since a negative ion (O-) and electron repel each other, energy is required and not released by the process. All second affinities are thus negative.
Electronegativity
Electronegativity is the tendency of an atom to attract the shared pair of electrons in a chemical bond towards itself. It is, thus, a measure of the ability of an atom in a molecule to attract electrons. In general, electronegativity increases from left to right across any period and from bottom to top in any group of the periodic table. The most highly electronegative elements (Fluorine) are found in the upper right corner of the periodic table (ignoring the noble gases.) The least electronegative elements (Caesium) are found in the lower-left corner of the table.

When two elements of widely different electronegativities combine, an ionic compound results. The electronegativity values of the non-metals do not differ much. The bonds formed between non-metals are essentially covalent with some polar character. The electronegativity difference gives an indication of the degree of polarity of the covalent bonds. If the difference is zero or very small, an essentially non-polar bond with equal or almost equal sharing of electrons can be assumed. The larger the electronegativity difference, the more polar the covalent bond is. The bond is polarized in the direction of the atom with larger electronegativity.

Atomic radii: The distance between the nucleus and the outermost shell containing the electron cloud is known as the atomic radius.
In general, the atomic radius decreases while going across a period in the periodic table Figure. This is because of the increasing nuclear charge while the electrons are added to the same shell. On the other hand, the atomic radius increases as we move from top to bottom in a group of the periodic table Figure. This happens because of the increasing number of shells. Though the nuclear charge also increases, the effect of adding a new shell is very large and overcomes the effect of increased nuclear charge.
Variation of the atomic radius with an atomic number for alkali metals (group 1) and halogens (group 17).

Ionic radii: It is defined as the distance between the nucleus and the point up to which the element has influence over its electron cloud. Generally, the cationic radius is smaller than its neutral atom, whereas the anionic radius is larger. An important point to remember here is ions which are having same no. of electrons are called isoelectronic species ( eg. S2- K+ Ca2+Cl-).

Valency

From the position of an element in a particular group of the periodic table, one can infer its valency. The valency of a representative element is usually given by the number of electrons in the outermost orbital and /or equal to eight minus the number of outermost electrons. For example, alkali metals (group 1) having one outermost electron are monovalent and alkali earth metals (group 2) having two outermost electrons are bivalent. Halogens (group 17) with seven outermost electrons are monovalent (eight minus number of outermost electrons). There are, however, some exceptions to this rule.
Periodic Trends in Valence of Elements as shown by the Formulas of Their Compounds.
The first element of each of the groups namely lithium, beryllium, boron differs in many respects from the other members of their respective group. For exampl, the behaviour of lithium is more similar to that of magnesium. This kind of similarity in properties of certain elements which are placed diagonally across in the periodic table is known as diagonal relationship. Diagonal relationships occur because of the directions in the trends of various properties as you move across or down the periodic table.
Many of the chemical properties of an element are related to the size of the atom.
The anomalous behaviour is attributed to their small size, large charge/ radius ratio and high electronegativity of the elements.

Summary

Mendeleev's periodic law is based on atomic masses of the elements. The modern periodic law proposed by Mosley recognizes the properties of the elements as the periodic functions of their atomic numbers. Elements are classified into s,p(Representative), d(transition) and f (inner transition) on the basis of the modern periodic table. Elements following uranium are called transuranic elements. Ionisation enthalpy, electron gain enthalpy, electronegativity are some of the periodic properties which regularly decreases down the group and increases along the period. Atomic and ionic radii are the periodic properties which increase down the group and decreases along the period. According to the modern periodic table, elements on the extreme left form basic oxides, those at the right forms acidic oxides and amphoteric or neutral oxides are formed by the elements in the middle.
In case you have any doubts or queries in your mind, feel free to share it in the comment section below. To help you prepare efficiently for RRB NTPC 2019 exam, Gradeup has launched a test series which will cover the complete syllabus as per the latest pattern.

Some Important Questions related to Periodic Table

1. Which law states that the atomic mass of the central element is the arithmetic mean of the atomic mass of the other 2 elements?
A. Newland’s law of octavesB. Doberiner’s law of triadsC. Mendeleev periodic tableD. Modern periodic table
2. In the Modern Periodic Table, there are
A. 18 Groups and 09 periodsB. 18 Groups and 07 periodsC. 07 Groups and 18 periodsD. 08 Groups and 06 periods
3. In Moseley’s periodic table elements are arranged according to-
A. Increasing atomic numberB. Increasing atomic weightC. Increasing reactivityD. Types of element
4. Which elements in the periodic table are chemically inactive?
A. Representative elementsB. Inert gasesC. Transitional elementsD. Inner transitional elements
5. Which of the following atomic number falls in the 2nd group and the 4th period of the periodic table?
A. 20B. 22C. 18D. 10
6. In a periodic table, while moving from left to right in a period, the number of  ________ remains the same.
A. electronsB. protonsC. shellsD. All of these
7. In the periodic table of elements, on moving from left to right across a period, the atomic radius_______.
A. DecreasesB. IncreasesC. Remains unchangedD. Does not follow a definite pattern
8. The modern periodic table consists of 18 groups and 7 periods. What is the atomic number of the element placed in the 1st group and the 4th period?
A. 21B. 17C. 19D. 9
9. The modern periodic table consists of 18 groups and 7 periods. What is the atomic number of the element which is kept in the 4th row and 4th period?
A. 24B. 20C. 22D. 12
10. Which groups of the periodic table are known as s-block elements?
A. 1 and 2B. 3 - 12C. 13 - 18D. None of these
11. Which block elements of the periodic table are also known as inner transition elements?
A. d-blockB. f-blockC. s-blockD. p-block
12. Which of these elements in the periodic table are also called semi-metals?
A. MetalsB. Non MetalsC. MetalloidsD. Gases
13.Electronic configuration of an element is 1s2, 2s2, 2p6, 3s2, 3p6, 4s1, 3d5. The block and period of the element in the periodic table will be
A. p block, IInd periodB. d block, IIIrd periodC. d block, IVth periodD. s block, IIIrd period
14. Modern periodic law had been given by ____.
A. MoseleyB. MendeleevC. Lother-MayerD. Lavoisier
15. Who is known as the father of the periodic table?
A. Dmitri MendeleevB. Antoine LavoisierC. John NewlandsD. Henry Moseley 
16. How many elements are there in the 5th period of the modern periodic table?
A. 2B. 8C. 18D. 36
17.The elements of a group in the periodic table
A. have similar chemical properties.B. have consecutive atomic numbersC. are isobarsD. are isotopes
18. The modern periodic table consists of 18 groups and 7 periods. What is the atomic number of the element placed in the 3rd group and the 4th period?
A. 23B. 21C. 19D. 11
19. What is the common characteristic of the elements of the same group in the periodic table?
A. Electrons in outer most shellB. Total number of electronsC. Total number of protonsD. Atomic weight
20. Which metal is the heaviest in the periodic table among the following?
A. OsB. PtC. CaD. W
21. Which one of the following is the basis of the modern periodic table?
A. Atomic massB. Atomic numberC. Atomic sizeD. Atomic volume
22. Which one of the following is not a periodic property i.e. does not show any trend on moving from one side to the other in the periodic table?
A. Atomic sizeB. ValencyC. RadioactivityD. Electronegativity


परिचय

हमारी पृथ्वी पर 109 से अधिक तत्व हैं। प्रत्येक तत्व को अलग करके उसके भौतिक एवं रासायनिक गुणों का अध्ययन करना एक कठिन कार्य होगा। इस अध्याय का मुख्य विषय तत्वों को उनके इलेक्ट्रॉनिक विन्यास के आधार पर व्यवस्थित करना और फिर उनके भौतिक एवं रासायनिक गुणों का अध्ययन करना है। तत्वों के गुणधर्मों को बेहतर ढंग से समझने के लिए उन्हें वर्ग और आवर्त में वर्गीकृत किया गया है।

आवर्त सारणी के विकास का महत्व एवं संक्षिप्त इतिहास

सभी प्रकार के पदार्थों की मूलभूत इकाई तत्त्व है। सन् 1800 तक केवल 31 तत्व ही ज्ञात थे। आज 105 से अधिक तत्व ज्ञात हैं। प्रत्येक तत्व और उसके यौगिकों के गुणों को याद रखना असंभव है। इसलिए, तत्वों को कुछ वर्ग में बांटने के कई प्रयास किए गए हैं। इस वर्गीकरण का उद्देश्य तत्वों और उनके यौगिकों के रसायनशास्त्र को आसानी से समझना है। दिमत्री आई. मेंडलीव (1834-1907) ने आवर्त सारणी विकसित की। सारणी में समाहित संबंधों से, उन्होंने उस समय अज्ञात तत्वों की उपस्थिति और गुणधर्मों के बारे में बताया। आश्चर्यजनक रूप से ये अनुमान सही साबित हुए। कालान्तर में, वर्गीकरण का आधार परमाणु द्रव्यमान से हटकर परमाणु संख्या हो गया।
तत्वों के आधुनिक वर्गीकरण के आधार पर रसायनशास्त्र का अध्ययन आसान हो गया है। आज किसी वर्ग के एक तत्व के गुणों को जानकर, आप अन्य तत्वों के गुणों का अनुमान लगा सकते हैं। व्यक्ति को तत्वों अथवा उसके यौगिकों के सभी गुणों को याद रखने की आवश्यकता नहीं है। व्यक्ति को सिर्फ आवर्त सारणी के किसी आवर्त और वर्ग में तत्वों की प्रवृत्तियों को समझने की आवश्यकता है।

आवर्त सारणी के विकास का संक्षिप्त इतिहास

सन् 1829 में, डॉबेराइनर ने सुझाया कि तत्वों को तीन वर्गों (त्रिक) में व्यवस्थित किया जा सकता है, जिसमें बीच वाले तत्व का परमाणु भार अन्य दो तत्वों के परमाणु भारों का माध्य होता है। हालांकि केवल कुछ इलेक्ट्रॉन को इन त्रिक में रखा जा सका।
 डॉबेराइनर के त्रिक तत्त्व
त्रिकमाध्य परमाणु भार
लीथियम (7)सोडियम (23)पोटैशियम (39)(7+ 39)/2 = 23
(Li)(Na)(K)
कैल्शियम (40)स्ट्रॉन्शियम (87.5)बेरियम (137.5)(40 +137.5)/2 = 88.75
(Ca)(Sr)(Ba)
फास्फोरस (31)आर्सेनिक (76)एंटीमनी (120)(31 + 120)/2 = 75.5
(P)(As)(Sb)
सल्फर (32)सेलेनियम (79)टेल्यूरियम (127.5)(32+ 137.5)/2 = 79.25
(S)(Se)(Te)
क्लोरीन (35.5)ब्रोमीन (80)आयोडीन (127)(35.5 + 127)/2 = 81.25
(Cl)(Br)(I)

सन् 1865-66 में, जॉन ए.आर. न्यूलैंड्स ने बताया कि जब तत्त्वों को उनके परमाणु भारों के बढ़ते क्रम में व्यवस्थित किया गया, तो दिए गए तत्त्व से आठवें तत्त्व के गुणों में पहले तत्त्व के गुण के साथ समानता थी, जैसे संगीत में आठवां नाद समान होता है। उन्होंने इसे अष्टक का नियम कहा था। हल्के तत्त्वों के लिए यह नियम तो सही था लेकिन भारी तत्त्वों के लिए यह असफल रहा।
सन् 1869 में जर्मनी में जे. लूथर मेयर और रूस में दिमत्रि आई. मेंडलीव के स्वतंत्र कार्य करते हुए, तत्त्वों के मध्य अधिक विस्तृत और उन्नत संबंध दिया। लूथर ने परमाणु आयतन (परमाणु द्रव्यमान/आयतन) को तत्त्व के परमाणु भार के सापेक्ष रखकर एक आरेख खींचा। उन्होंने निष्कर्ष निकाला कि समान गुणधर्म रखने वाले तत्त्व आरेख में समान स्थान पर स्थित होते हैं।

मेंडलीव की आवर्त सारणी

मार्च 1869 में, मेंडलीव ने तत्त्वों के आवर्ती वर्गीकरण पर अपनी प्रसिद्ध योजना दी। “यह कहती है कि तत्त्वों के गुणधर्म उनके परमाणु भारों के आवर्ती फलन होते हैं।
मेंडलीव ने उस समय ज्ञात सभी तत्त्वों को एक क्षैतिज पंक्ति में परमाणु भारों के बढ़ते क्रम में व्यवस्थित किया। उन्होंने कुछ अज्ञात तत्त्वों के लिए सारणी में कुछ रिक्त स्थान छोड़ दिए और साथ ही उनके गुणों की भी घोषणा की। आखिरकार इन तत्त्वों को खोज होने पर ये तत्त्व आश्चर्यजनक रूप से सारणी में सही स्थान पर बैठ गए। उदाहरण के लिए, मेंडलीव की वास्तविक आवर्त सारणी में देखा जा सकता है कि जिंक (वर्ग II) और आर्सेनिक (वर्ग V) के बीच दो स्थान खाली हैं। क्योंकि ये अज्ञात तत्त्व बाद में एल्यूमीनियम और आयरन निकले, मेंडलीव ने इनका नाम एका-एल्यूमीनियम और एका-सिलिकॉन रहा था। जब इन तत्त्वों जिन्हें आज गैलियम (एका-एल्यूमीनियम) और जर्मेनियम (एका-सिलिकन) के नाम से जाना जाता है, की खोज हुई थी, उनके गुणधर्म तर्कपूर्ण रूप से सहमत थे।

मेंडलीव की इका-एल्यूमीनियम (गैलियम) की भविष्यवाणी

गुणधर्ममेंडलीव द्वारा सन् 1871में घोषित एका-एल्यूमीनियम (Ea)गैलियम (Ga)
1875 में ज्ञातवर्तमान स्वीकार्य
परमाणु द्रव्यमान (ए.एम.यू.)6869.969.72
घनत्व, r/ /g cm-25.95.945.904
द्रवणांक, T/Kनिम्न303.15302.78
अम्ल और क्षार में विलेयताEa अम्ल और क्षार दोनों में धीरे-धीरे घुल जाएगाGa अम्ल और क्षार दोनों में धीरे-धीरे घुलता हैGa अम्ल और क्षार दोनों में धीरे-धीरे घुलता है
ऑक्साइड का सूत्रEa2O3Ga2O3Ga2O3 ((a और b रूप)
ऑक्साइड का घनत्व r /g cm-25.5-6.44 ((a रूप) और 5.883 (b रूप)
सल्फेट की अभिक्रियाEa2(SO4)3 फिटकरी बनाएगा।गैलियम फिटकरी बनाता हैगैलियम फिटकरी बनाता है, उदाहरण (NH4)2SO.Ga (SO).24HO
सल्फाइड का निर्माणH2S अथवा (NH4)2S द्वारा Ea2S3 बैठ जाएगाH2S अथवा (NH4)2S द्वारा Ga2S3 बैठ जाएगाH2S अथवा (NH4)2S द्वारा Ga2S3 बैठ जाएगा
क्लोराइड के गुणधर्मZnCl2 के साथ EaClअधिक विस्फोटक हैZnCl2 के साथ GaCl3 अधिक विस्फोटक हैZnCl2 के साथ GaCl3 अधिक विस्फोटक है

मेंडलीव की एका-सिलिकन (जर्मेनियम) की भविष्यवाणी

गुणमेंडलीव द्वारा 1871 में घोषित एका-सिलिकन (Es) जर्मेनियम (Ge)
बायोशबुदरण द्वारा 1886 में ज्ञातवर्तमान स्वीकार्य
परमाणु द्रव्यमान/7272.3272.59
घनत्व, g-cm-35.55.475.35
द्रवणांक, T/KHigh-1220
विशिष्ट ऊष्मा क्षमता, c/J g-10.30510.31770.3903
आण्विक आयतन, Vm/ cm31313.2213.5
रंगगहरा ग्रेग्रे जैसा सफेदग्रे जैसा सफेद
संयोजकता444
अम्लों और क्षारों के साथ अभिक्रियाES पर अम्लों का आंशिक हमला होगा लेकिन यह क्षारों के हमलों को रोक लेगाGe न तो HCL में और न ही NaOH में घुलता है, पर सान्द्र NaOH में घुल जाता हैGe न तो HCL में और न ही NaOH में घुलता है, पर सान्द्र NaOH में घुल जाता है
टेट्राएथिल व्युत्पन्न का क्वथनांक, T/K433433458-460
डाइऑक्साइड का घनत्व, /g cm-34.74.74.2
टेट्राक्लोराइड का घनत्व , /g cm-31.91.8871.844
टेट्रोक्लोराइड का क्वथनांक, T/K373359357

आधुनिक आवर्त सारणी एवं आवर्त सारणी का वर्तमान स्वरूप

आधुनिक आवर्ती नियम के अनुसार, तत्त्वों और उनके यौगिकों के गुणधर्म उनके परमाणु क्रमांकों के आवर्ती फलन होते हैं। अतः, आधुनिक आवर्त सारणी में, परमाणु क्रमांक (जो कि नाभिक के आवेश के बराबर होता है) को तत्त्वों के वर्गीकरण का आधार माना गया है।

आवर्त सारणी का वर्तमान रूप

आवर्त सारणी के कई रूप हैं। सबसे लोकप्रिय रूप दीर्घ आवर्त सारणी है। इस सारणी में सात क्षैतिज पंक्तियां हैं, जिन्हें आवर्त कहते हैं। प्रत्येक आवर्त एक नई मुख्य क्वांटम संख्या n से शुरू होती है, और इलेक्ट्रॉन आफ़बाऊ नियम के अनुसार कक्षकों में भरे जाते हैं। पहले आवर्त में दो तत्त्व हैं, हाइड्रोजन (1s1), और हीलियम (1s2) और प्रथम कोश (K) पूर्ण भरा होता है। दूसरा आवर्त n = 2 से शुरू होता है, और इसमें आठ तत्त्व हैं। इसकी शुरूआत लीथियम (2s1) से होती है और यह निऑन (2s2p6) पर समाप्त होती है और इस तरह से दूसरा कोष (L) पूर्ण भरता है। तीसरे आवर्त (n = 3) में, M कोष भरना शुरू हो जाता है, और इसमें भी आठ तत्त्व हैं। इसकी शुरूआत सोडियम (3s1) से होती है और यह आर्गन (3s23p6) पर पूर्ण होता है।

तत्त्वों के परमाणु क्रमांकों और निम्न अवस्था के इलेक्ट्रॉनिक विन्यास के साथ दीर्घ आवर्त सारणी (आई.यू.पी.ए.सी., 1984 के नवीनतम सुझावों के अनुसार)

दूसरे आवर्त के विपरीत, तीसरे आवर्त में तत्त्व बाह्य कक्षा में पूर्णतः भरे नहीं होते हैं, और 3d उपकोश के कक्षक खाली रहते हैं। वे तत्त्व जिनमें s उपकोश भरा होता है s-ब्लॉक के तत्त्व कहते हैं और जो तत्त्व जिनका p उपकोश भरा होता है उन्हें p ब्लॉक के तत्त्व कहते हैं।
चौथे आवर्त (n = 4) में N कोश पोटैशियम (4s1) के साथ भरना शुरू हो जाता है और क्रिप्टॉन (4s24p6) के साथ पूर्ण भर जाता है। इसमें तीसरे आवर्त से 10 तत्त्व अधिक अर्थात् 18 तत्त्व हैं। इसी कारण से 3d कक्षक में इलेक्ट्रॉन 4s कक्षक के बाद भरे जाते हैं लेकिन 4p कक्षक से पहले भरते हैं।
21Sc 1s2 2s2 2p6 3s2 3p6 3d1 4s2
22Ti 1s2 2s2 2p6 3s2 3p6 3d2 4s2
.
.
.
.
.
.
30Zn 1s2 2s2 2p6 3s2 3p6 3d10 4s2
वे तत्त्व जिनके d कक्षक भरे होते हैं d ब्लॉक के तत्त्व कहलाते हैं। चौथे आवर्त के d ब्लॉक के तत्त्व में, M कोश 18 इलेक्ट्रॉनों के भरे जाने तक भरती है। इसी प्रकार, पांचवे आवर्त (n = 5) में 18 तत्त्व हैं। यह रुबिडियम (5s1) से शुरू होता है और ज़िनॉन (5s25p6) पर समाप्त होता है। छहवें आवर्त (n = 6) में 32 तत्त्व हैं जिसमें इलेक्ट्रॉन 6s, 4f, 5d और 6p क्रम से कक्षकों में प्रवेश करते हैं। इसमें प्रारंभ में दो तत्त्व (Cs और Ba) हैं जिसके बाद लैंथानम (La) है जिसमें आखिरी से पहले वाला कोश भरना शुरू होता है। लेकिन इसके ठीक बाद हमारे पास 14 तत्त्व (58Ce से 71Lu) हैं, जिसमें 4f कक्षक भरने की प्रक्रिया में रहते हैं। फिर (72Hf से 80Hg तक) 5d कक्षक भरे जाते हैं और आखिर में आवर्त छह p ब्लॉक तत्त्वों (81Tl से 86Rn तक) पर समाप्त होता है। सातवें आवर्त (n = 7) में दो s ब्लॉक तत्त्व (87Fr और 88Ra) हैं, जिसके बाद d ब्लॉक के तत्त्व एक्टीनियम (89Ac) और 14f ब्लॉक के तत्त्व (90Th से 103Lr) आते हैं, और पुनः d ब्लॉक के तत्त्वों (Z = 104 से 107) पर समाप्त होता है। यह एक अपूर्ण आवर्त है।
आवर्त सारणी में उर्ध्वाधर स्तंभ को वर्ग अथवा तत्त्वों का परिवार कहते हैं। नवीनतम आई.यू.पी.ए.सी (इंटरनेशनल यूनियन ऑफ़ प्योर एंड एप्लाइड केमिस्ट्री) की सिफ़ारिशों के अनुसार, वर्ग को 1 से 18 तक संख्या दी जाती है।

तत्त्वों के प्रकार

तत्त्वों को उनके इलेक्ट्रॉनिक विन्यास के आधार पर चार प्रकारों में बांटा जा सकता है (सारणी 5.4)। जोकि निम्न हैं:
  1. आदर्श गैस
  2.  निरूपक तत्त्व या मुख्य वर्ग के तत्त्व (s एवं p ब्लॉक के तत्त्व)
  3. संक्रमण तत्त्व (d ब्लॉक के तत्त्व)
  4. आंतरिक संक्रमण तत्त्व (f-ब्लॉक के तत्त्व)

आदर्श गैस

आदर्श गैस आवर्त सारणी के वर्ग 18 में आती हैं। समूह के पहले तत्त्व हीलियम (जिसका इलेक्ट्रॉनिक विन्यास 1sहै) को छोड़कर अन्य सभी तत्त्व जैसे नियॉन, आर्गन, क्रिप्टॉन, ज़िनॉन और रेडॉन के सबसे बाहरी कोष का इलेक्ट्रॉनिक विन्यास ns2np6 होता है। इन तत्त्वों में इलेक्ट्रॉनों के स्थायी व्यवस्था के कारण ये बहुत कम रासायनिक सक्रियता प्रदर्शित करते हैं।

निरुपक तत्त्व या मुख्य वर्ग के तत्त्व

वर्ग 1 (क्षारीय धातुएं Li...Fr) से संबंधित तत्त्व जिनकी सबसे बाहरी कक्षा का इलेक्ट्रॉनिक विन्यास ns1 है और वर्ग 2 (क्षारीय मृदा धातुएं Be ... Ra) से संबंधित तत्त्व जिनकी सबसे बाहरी कक्षा का इलेक्ट्रॉनिक विन्यास ns2 है, इन्हें s ब्लॉक में रखा गया है। वर्ग 13 से 17 तक के तत्त्व (बाह्यतम इलेक्ट्रॉनिक विन्यास ns2 np1 से ns2 np5 के मध्य है) आवर्त सारणी के p ब्लॉक के तत्त्व हैं। s और p ब्लॉक के तत्त्वों को संयुक्त रूप से निरूपक तत्त्व कहते हैं।
निरूपक तत्त्वों के प्रत्येक आवर्त की समाप्ति पर आदर्श गैसें हैं, इन्हें भी निरूपक तत्त्वों के साथ रखा गया है। इन तत्त्वों का रसायनशास्त्र संयोजी कोश (सबसे बाह्य कोश) में स्थित इलेक्ट्रॉनों की संख्या पर निर्भर करता है। समूह 1 और 2 के लिए, वर्ग संख्या संयोजी इलेक्ट्रॉनों की संख्या प्रदर्शित करती है। वर्ग 13 से 17 के लिए उस वर्ग संख्या से 10 घटाने पर संयोजी इलेक्ट्रॉनों की संख्या ज्ञात की जा सकती है।

संक्रमण तत्त्व

आवर्त सारणी के मध्य में वर्ग 3 से 12 तक के तत्त्व, जिनके बाहरी कोष का इलेक्ट्रॉनिक विन्यास (n-1)d1-10ns1-2 है, आवर्त सारणी के d ब्लॉक के तत्त्व हैं और इसलिए ये संक्रमण तत्त्व कहलाते हैं। इन तत्त्वों में संगत 3d, 4d अथवा 5d कक्षकों के भरने के साथ n का मान 4, 5 व 6 हो सकता है। ये सभी धातुएं हैं और विभिन्न आक्साइड अवस्था, रंगीन आयनों एवं सम्मिश्रणों के निर्माण के लिए विशिष्ट हैं।

आंतरिक संक्रमण तत्त्व

आवर्त सारणी के आखिरी में, दो पंक्तियां हैं जिनमें पहली पंक्ति लैंथेनाइड श्रेणी (z = 58 से 71) और दूसरी पंक्ति एक्टिनाइड श्रेणी (Z = 90 से 107) है जिसमें क्रमशः 4f और 5f कक्षक अपूर्ण हैं। इनमें (n-1)d कक्षक भी अपूर्ण हैं और इसलिए इनके बाह्य कोष का इलेक्ट्रॉनिक विन्यास (n-2)f1-14(n-1)d0-10 ns2 है। चूंकि इन प्रत्येक श्रेणी में, एक आंतरिक f इलेक्ट्रॉन प्रत्येक तत्त्व से जुड़ता है, तत्त्वों की दो श्रेणियों को f ब्लॉक के तत्त्व अथवा आंतरिक संक्रमण तत्त्व कहते हैं। इनमें से, लैंथेनाइड और एक्टीनाइड समान गुणधर्म प्रदर्शित करते हैं। दोनों श्रेणियों के तत्त्व धातु हैं।
इस आवर्ती वर्गीकरण के माध्यम से हम तत्त्वों और उनके यौगिकों के अध्ययन को व्यवस्थित बना सकते हैं। ऐसा देखा गया है कि तत्त्वों के इलेक्ट्रॉनिक विन्यासों का तत्त्वों के भौतिक एवं रासायनिक गुणों से प्रत्यक्ष अथवा अप्रत्यक्ष संबंध है। इस वर्गीकरण से हम तत्त्वों के गुणों और उनके सामान्य व्यवहार में आवर्तिता के कारण को समझ सकते हैं।
तत्त्वों के गुणधर्मों के आवर्ती लक्षण
आधुनिक आवर्ती नियम के अनुसार, तत्त्वों को उनके परमाणु क्रमांक के बढ़ते क्रम में व्यवस्थित करने पर विशेष अंतराल अथवा आवर्त बाद तत्त्वों के गुणधर्मों में पुनरावृत्ति होती है। किसी आवर्त में, परमाणु क्रमांक बढ़ने से संयोजक इलेक्ट्रॉनों की संख्या में वृद्धि होती है। किसी वर्ग में सबसे बाहरी कोश में समान इलेक्ट्रॉनिक विन्यास पुनः आता है। इसलिए, एक वर्ग के गुणधर्म समान होते हैं। दीर्घ आवर्त सारणी में, वे तत्त्व जिनके बाह्य इलेक्ट्रॉनों की संख्या समान होती है, समान वर्ग में आते हैं। इसके अतिरिक्त, समूह में तत्त्वों के गुणों में एक वृद्धि होती है। उदाहरण के लिए, वर्ग 1 के सभी सदस्यों के सबसे बाहरी कोश में एक इलेक्ट्रॉन है। इन तत्त्वों के गुणधर्म आपस में समान हैं। इसी प्रकार F, Cl, Br और I के बाहरी कोश में सात इलेक्ट्रॉन हैं और इसलिए ये भी रासायनिक रूप से समान गुणधर्म रखते हैं। वर्ग 18 के सदस्यों के सबसे बाहरी कोश में 8 इलेक्ट्रॉन (हीलियम को छोड़कर) होते हैं। सभी आदर्श गैस के गुणधर्म समान हैं। अब हम तत्त्वों के कुछ गुणधर्मों में आवर्ती लक्षणों पर चर्चा करेंगे।

घनत्व, द्रवणांक और क्वथनांक

आवर्त सारणी में किसी वर्ग में घनत्व, द्रवणांक और क्वथनांक जैसे गुणों में भी परिवर्तन दिखाई देता हैं, हालांकि यह बहुत नियमित नहीं होता है।
निरुपक तत्त्वों के आवर्त में, आवर्त में दाएं जाने पर घनत्व बढ़ता है और मध्य में कहीं पर अधिकतम हो जाता है। द्रवणांक और क्वथनांक भी बढ़कर कहीं मध्य में अधिकतम हो जाते हैं, और उसके बाद घटने लगते हैं।

आयनन ऊर्जा

यह ऊर्जा किसी तत्त्व की विलगित, उदासीन गैसीय अवस्था से एक इलेक्ट्रॉन को निकालने के लिए आवश्यक ऊर्जा की मात्रा है जिसके फलस्वरूप धनात्मक आयन का निर्माण होता है।
M(g) + ऊर्जा ------> M+(g) + e-
उदाहरण के लिए, Li(g) + 520 किलोजूल मोल-1 ------> Li+(g) + e-
इस प्रकार, लीथियम की प्रथम आयनन ऊर्जा 520 किलोजूल मोल-1 है। यदि एक इलेक्ट्रॉन को और निकाला जाए, तो और अधिक ऊर्जा की आवश्यकता होगी, जिसे द्वितीय आयनन ऊर्जा कहते हैं।
Li+ + 7297 किलोजूल मोल-1 -------> Li2+ + e-
इस तथ्य के कारण किसी धनावेशित परमाणु से इलेक्ट्रॉन को बाहर निकालना अधिक कठिन होता है। इस प्रकार, किसी तत्त्व की आयनन ऊर्जा का क्रमशः मान बढ़ता जाता है।
निम्न आकृति कुछ तत्त्वों की उनके परमाणु क्रमांकों के सापेक्ष प्रथम आयनन ऊर्जा का आरेख प्रदर्शित करती है। आरेख में कुछ बातें स्पष्ट दिखाई देती हैं।
  1. आदर्श गैस अपने अत्यधिक स्थायी विन्यास के कारण सबसे दाएं किनारे स्थित हैं।
  2. क्षारीय धातुओं की आयनन ऊर्जा निम्नतम होती है इसलिए वे अत्यधिक सक्रिय होते हैं।
3. सामान्यतः आवर्त में (Li से Ne तक) मान बढ़ता है। यह नाभिकीय आवेश के बढ़ने के कारण होता बढ़ता है और इलेक्ट्रॉन नाभिक के आकर्षण बल के कारण अधिक मज़बूती से बंधे होते हैं।
4. वर्ग में (Li से Cs तक) नीचे जाने पर आयनन ऊर्जा कम मात्रा में बढ़ती है। इसका कारण यह है कि बाहरी इलेक्ट्रॉन को निकालना थोड़ा आसान होता जाता है।
आवर्त सारणी के सापेक्ष आयनीकरण ऊर्जा के सामान्य लक्षण को आकृति में दिखाया जा सकता है। आयनीकरण ऊर्जा को या तो निरावेशित नलिका विधि अथवा स्पेक्ट्रोस्कोपिक विधि द्वारा ज्ञात कर सकते हैं।
अपवाद
  1. Ionisation Be> Ionisation B: प्रवेश प्रभाव के कारण बेरिलियम की आयनीकरण ऊर्जा बोरॉन के आयनाइजेशन ऊर्जा से अधिक होती है। Be = 1s2 2s2 & B = 1s2 2s2 2p1 S कक्षीय नाभिक के अधिक करीब है और इसलिए अधिक ऊर्जा की आवश्यकता होती है!
  2. Ionisation N> Ionisation O: O = 1s2 2s2 2p4 & N = 1s2 2s2 2p3 नाइट्रोजन का आयनाइजेशन ऊर्जा पूरी तरह से आधे भरे और स्थिर इलेक्ट्रॉन विन्यास के कारण ऑक्सीजन के आयनाइजेशन ऊर्जा से अधिक है।

इलेक्ट्रॉन बंधुता

इलेक्ट्रॉन बंधुता वह ऊर्जा है जो गैसीय अवस्था में किसी विलगित परमाणु से एक इलेक्ट्रॉन जोड़ने पर मुक्त होती है। उदाहरण के लिए,
X(g) + e- ------> X-(g) + ऊर्जा
(जहां X = F, ऊर्जा 322 किलोजूल मोल; X = Cl, ऊर्जा = 349 किलोजूल मोल; X = Br, ऊर्जा = 324 किलोजूल मोल; X = I, ऊर्जा= 295 किलोजूल मोल).
हैलोजन (वर्ग 17 का तत्त्व) स्थायी आदर्श गैस विन्यास प्राप्त करने के लिए एक इलेक्ट्रॉन ले सकता है। इसलिए इनकी इलेक्ट्रॉन बंधुता का मान बहुत अधिक होता है। जब हम आवर्त में दाएं ओर जाते हैं, तो  इलेक्ट्रॉन बंधुता बढ़ती है, और वर्ग में नीचे जाने पर यह घटती है। किसी तत्त्व की इलेक्ट्रॉन बंधुता को सामान्यतः अप्रत्यक्ष रूप से ऊष्मागतिकी आंकड़ों से ज्ञात की जा सकती है।
यद्यपि सभी तत्त्वों की इलेक्ट्रॉन बंधुता ज्ञात नहीं हुई हैं, आवर्त सारणी में कुछ तत्त्वों की इलेक्ट्रॉन बंधुताओं में निम्नलिखित चलन स्पष्ट हैं।
सामान्यतः वर्ग में नीचे जाने पर इलेक्ट्रॉन बंधुता का मान घटता है। यह वर्ग में नीचे जाने पर परमाणु का आकार बढ़ने से समझा जा सकता है। परमाणु का आकार बढ़ने के कारण, इलेक्ट्रॉनों के लिए प्रभावी नाभिकीय आकर्षण में कमी आती है। परिणामस्वरूप, परमाणु क्रमांक बढ़ने के साथ अतिरिक्त इलेक्ट्रॉनों को आकर्षित करने की प्रवृत्ति घट जाती है।
इस आकृति में, हैलोजन की इलेक्ट्रॉन बंधुता को परमाणु संख्या के सापेक्ष नापा गया है। उल्लेखनीय है कि अपेक्षा के विपरीत, फ्लोरीन की इलेक्ट्रॉन बंधुता क्लोरीन से कम है क्योंकि फ्लोरीन परमाणु का आकार छोटा होने के कारण इसका इलेक्ट्रॉनिक कोश बहुत संकुचित होता है। फ्लोरीन के संकुचन के परिणामस्वरूप जब कभी इलेक्ट्रॉन के 2p कक्षकों में प्रवेश करने पर इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण होता है। क्लोरीन परमाणु में, 3p कक्षक फ्लोरीन परमाणु में 2p कक्षकों के समान अधिक संकुचित नहीं होते हैं। क्लोरीन परमाणु कमजोर इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण के कारण, आने वाले इलेक्ट्रॉन को जल्दी से स्वीकार कर लेता है। इसलिए क्लोरीन की इलेक्ट्रॉन बंधुता का मान फ्लोरीन से ज्यादा होता है।
आदर्श गैस की स्थिति में, बाहरी s और p कक्षक पूर्ण भरे होते हैं। इन कक्षकों में अतिरिक्त इलेक्ट्रॉनों को रखा नहीं जा सकता है। इसलिए, आदर्श गैसों में इलेक्ट्रॉन स्वीकार करने की प्रवृत्ति नहीं पायी जाती है। इनकी इलेक्ट्रॉन बंधुता शून्य होती है।
किसी आवर्त में बाएं से दाएं जाने पर इलेक्ट्रॉन बंधुता सामान्यतः बढ़ती जाती है। यह नाभिकीय आवेश के बढ़ने के कारण होता है, जिससे इलेक्ट्रॉन अधिक आकर्षित होते हैं। उदाहरण के लिए दूसरे आवर्त में, फ्लोरीन की इलेक्ट्रॉन बंधुता का मान अधिकतम है।
द्वितीय इलेक्ट्रॉन बंधुता से आशय किसी ऋणायन को इलेक्ट्रॉन हस्तांतरित करने की प्रक्रिया से है। उदाहरण के लिए,
O-(g) + e- -----> O2-(g)
चूंकि एक ऋणायन (O-) और इलेक्ट्रॉन एक दूसरे को प्रतिकर्षित करते हैं, अतः इस प्रक्रिया में ऊर्जा मुक्त होने के स्थान पर उसकी ज़रूरत होगी इसलिए सभी द्वितीय इलेक्ट्रॉन बंधुताएं ऋणात्मक होती हैं।

विद्युत ऋणात्मकता

परमाणु के रासायनिक यौगिक में सहसंयोजक आबंध के इलेक्ट्रॉनिक युग्म को अपनी ओर आकर्षित करने की योग्यता की गुणात्मक माप विद्युत ऋणात्मकता है। अतः यह किसी अणु में परमाणु की इलेक्ट्रॉन को आकर्षित करने की योग्यता की माप है। सामान्यतः आवर्त में बाएं से दाएं तथा वर्ग में ऊपर से नीचे जाने पर विद्युत ऋणात्मकता का मान बढ़ता है। सबसे अधिक विद्युत ऋणात्मक तत्त्व (फ्लोरीन) (आदर्श गैस को छोड़कर) आवर्त सारणी के ऊपरी दाएं कोने पर पाया जाता है। सबसे कम विद्युत ऋणात्मक तत्त्व (सीज़ियम) सारणी के निचले बाएं कोने में पाया जाता है।
जब दूर स्थित भिन्न विद्युत ऋणात्मक तत्त्व मिलते हैं, तो एक आयनिक यौगिक बनता है। अधातुओं के विद्युत ऋणात्मक मान में अधिक अंतर नहीं होता है। अधातुओं के मध्य निर्मित बंध कुछ ध्रुवीय गुण के साथ अनिवार्य रूप से सहसंयोजी प्रकृति का होता है। विद्युत ऋणात्मक अंतर सहसंयोजी बंध की ध्रुवीयता की माप का संकेत देता है। यदि अंतर शून्य या बहुत कम है, तो समान या लगभग समान इलेक्ट्रॉन युग्म का एक अनिवार्य रूप से अध्रुवीय बंध माना जा सकता है। विद्युत ऋणात्मकता का अंतर जितना अधिक होगा, सहसंयोजक बंध उतना ही अधिक ध्रुवीय होगा। यह बंध अधिक विद्युत ऋणात्मकता वाले परमाणु की ओर ध्रुवित हो जाता है।
परमाणु त्रिज्या: नाभिक और बाह्यतम कोश जिसमें इलेक्ट्रॉन क्लाउड होते हैं, के बीच की दूरी को परमाणु त्रिज्या कहते हैं।
सामान्यतः, आवर्त सारणी में किसी आवर्त के बाएं से दाएं जाने पर परमाणु त्रिज्या घटती है। इसका कारण नाभिकीय आवेश के बढ़ने के साथ समान कोश में इलेक्ट्रॉनों का जुड़ना है। वहीं दूसरी ओर, आवर्त सारणी में वर्ग में ऊपर से नीचे जाने पर परमाणु त्रिज्या का मान बढ़ता है। इसके पीछे कारण कोशों की संख्या में वृद्धि है। हालांकि नाभिकीय आवेश भी बढ़ता है, एक नए कोश को जोड़ने का प्रभाव बहुत बड़ा होता है और यह बढ़े हुए नाभिकीय आवेश के प्रभाव को कम कर देता है।
क्षारीय धातुओं (वर्ग 1) और हैलोजन (वर्ग 17) के लिए परमाणु क्रमांकों के साथ परमाणु त्रिज्या में विभिन्नता
आयनी त्रिज्या: यह किसी तत्त्व के नाभिक और उसका अपने इलेक्ट्रॉन क्लाउड में अंतिम प्रभाव बिन्दु के बीच की दूरी है। सामान्यतः धनायनों की त्रिज्या उदासीन परमाणु से छोटी होती है, जबकि ऋणायनों की त्रिज्या उदासीन परमाणु से बड़ी होती है। यहां याद रखने योग्य एक महत्वपूर्ण बिंदु है कि समान इलेक्ट्रॉन संख्या वाले आयन को सम इलेक्ट्रॉनिक स्पीशीज़ कहते हैं। (उदाहरण S2- K+ Ca2+Cl-).

संयोजकता

आवर्त सारणी में एक विशेष वर्ग में किसी तत्त्व की स्थिति से उसकी संयोजकता का अनुमान लगाया जा सकता है। किसी तत्त्व की संयोजकता को प्रायः सबसे बाहरी कोश में इलेक्ट्रॉनों की संख्या से अथवा सबसे बाहरी इलेक्ट्रॉनों की संख्या को आठ से घटाकर प्राप्त करते हैं। उदाहरण के लिए, क्षारीय धातुओं (वर्ग 1) जिनकी बाह्यतम कक्षा में एक इलेक्ट्रॉन होता है, एक संयोजी होते हैं, क्षारीय मृदा धातुओं (वर्ग 2) की बाह्यतम कक्षा में दो इलेक्ट्रॉन होते हैं, इसलिए ये द्विसंयोजी होती है। हालांकि इस नियम के कुछ अपवाद हैं। 
तत्त्वों के यौगिकों के सूत्रों द्वारा प्रदर्शित संयोजकता में आवर्ती लक्षण
प्रत्येक वर्ग के प्रथम तत्त्व जैसे लीथियम, बेरीलियम और बोरान अपने वर्ग के अन्य तत्त्वों से काफी तरह से भिन्न हैं। उदाहरण के लिए, लीथियम का व्यवहार मैग्नीशियम के काफी समान है। आवर्त सारणी में विकर्णतः रखे गए किन्हीं विशेष तत्त्व के गुणधर्मों में इस प्रकार की समानता को विकर्ण संबंध कहते हैं। आवर्त सारणी में नीचे जाने पर विकर्ण संबंध का कारण विभिन्न गुणधर्मों में लक्षणों की दिशा है।
किसी तत्त्व के बहुत से रासायनिक गुण परमाणु के आकार से संबंधित होते हैं
तत्त्वों के असंगत गुण का कारण उनका छोटा आकार, अधिक आवेश/त्रिज्या अनुपात और उच्च विद्युत ऋणात्मकता है।

सारांश

याद रखने योग्य बिंदु: मेंडलीव की आवर्त सारणी तत्त्वों के परमाणु द्रव्यमानों पर आधारित थी। आधुनिक आवर्त सारणी को मोज़ले ने तत्त्वों के गुणधर्मों को उनके परमाणु क्रमांकों का आवर्ती फलन बताकर प्रतिपादित किया था। आधुनिक आवर्त सारणी के आधार पर तत्त्वों को s, p (निरुपक तत्त्व), d (संक्रमण तत्त्व) और f (आंतरिक संक्रमण तत्त्व) में वर्गीकृत कर सकते हैं। यूरेनियम के बाद के तत्त्वों को परा यूरेनिक तत्त्व कहते हैं। आयनीकरण ऊर्जा, इलेक्ट्रॉन ग्रहण ऊर्जा, विद्युत ऋणात्मकता कुछ आवर्ती गुणधर्म हैं जो वर्ग में नीचे जाने पर निरंतर कम होते जाते हैं और आवर्त में बाएं से दाएं जाने पर बढ़ते जाते हैं। परमाणु और आयनी त्रिज्या आवर्ती गुणधर्म हैं जो वर्ग में नीचे जाने पर बढ़ते हैं और आवर्त में दाएं ओर जाने पर घटते हैं। आधुनिक आवर्त सारणी के अनुसार, बिलकुल बाएं किनारे के तत्त्व क्षारीय ऑक्साइड बनाते हैं, दाएं किनारे के तत्त्व अम्लीय ऑक्साइड बनाते हैं और मध्य के तत्त्व उभयधर्मी अथवा उदासीन ऑक्साइड बनाते हैं।

आवर्त सारणी से संबंधित कुछ महत्वपूर्ण प्रश्न

1.कौन सा नियम बताता है कि केंद्रीय तत्व का परमाणु द्रव्यमान अन्य 2 तत्वों के परमाणु द्रव्यमान का समांतर माध्‍य था?
A. ऑकटैव्‍स का न्यूलैंड का नियमB. ट्रैड्स का डोबराइनर का नियमC. मेंडलीव पीरियोडिक टेबलD. मॉडर्न पीरियोडिक टेबल
2. आधुनिक आवर्त सारणी में, 
A. 18 समूह और 09 अवधि हैं
B. 18 समूह और 07 अवधि हैं
C. 07 समूह और 07अवधि हैं
D. 08 समूह और 06 अवधि हैं
3.मोसले की आवृत सारणी में तत्‍व _________ व्‍यवस्थित‍ किए गए हैं|
A. परमाणु संख्‍या के बढ़ते क्रम मेंB. परमाणु भार के बढ़ते क्रम मेंC. क्रियाशीलता के बढ़ते क्रम मेंD. तत्‍वों के प्रकार से
4.आवर्त सारणी में कौन सा/से तत्व रसायनत: निष्क्रिय हैं?
A. प्रतिनिधि तत्‍वB. अक्रिय गैसेंC. परिवर्ती तत्‍वD. अक्रिय परिवर्ती तत्‍व
5.आधुनिक आवर्त सारणी में उस तत्व की परमाणु संख्या क्या है, जिसे दूसरे समूह और चौथे आवर्त में रखा गया है?
A. 20B. 22C. 18D. 10
6.आवर्त सारणी में, एक आवर्ण में बाएं से दाएं जाने पर, ______ की संख्या समान होती है।
A. इलेक्ट्रॉनB. प्रोटॉनC. कोशोंD. ये सभी
7.तत्वों की आवर्त सारणी में, किसी आवर्तक में बायें से दायें ओर जाने पर परमाणु की त्रिज्या_____.
A. ह्रास होती हैB. में वृद्धि होती हैC. अपरिवर्तित रहती हैD. किसी निश्चित पैटर्न का पालन नहीं करती।
8.आधुनिक आवर्त सारणी में 18समूह और आवर्त होते है | उस तत्व की परमाणु संख्या क्या है जिसे प्रथम समूह और चोथे आवर्त में रखा में रखा गया है ?
A. 21B. 17C. 19D. 9
9.आधुनिक आवर्त सारणी में 18 समूह और 7 आवर्त होते हैं | उस तत्व की परमाणु संख्या क्या है, जिसे चौथे समूह और चौथे आवर्त में रखा गया है ?
A. 24B. 20C. 22D. 12
10.आवर्त सारणी के किन समूहों को एस-ब्लॉक तत्वों के रूप में जाना जाता है?
A. 1 और 2B. 3 - 12C. 13 - 18D. इनमे से कोई नहीं
11.आवर्त सारणी के किस ब्‍लॉक के तत्‍वों को आंतरिक संक्रमण तत्‍वों के नाम से भी जाना जाता है?
A. d-ब्‍लॉकB. f-ब्‍लॉकC. s-ब्‍लॉकD. p-ब्‍लॉक
12.आवर्त सारणी में इनमें से कौन से तत्व को सेमी-मेटल्स भी कहा जाता है?
A. धातुB. अधातुC. उपधातुD. गैस
13.एक तत्व का इलेक्ट्रोनिक विन्यास 1s2, 2s2, 2p6, 3s2, 3p6, 4s1, 3d5 है| आवधिक तालिका में तत्व का खण्ड और अंतराल होगा:
A. p खण्ड, IInd अंतरालB. d खण्ड, IIIrd अंतरालC. d खण्ड, IVth अंतरालD. s खण्ड, IIIrd अंतराल
14.मॉडर्न पीरियाडिक लॉ ____ ने दिया था।
A. मोज़लेB. मेंदेलीवC. लोथर-मेयेरD. लावोसिएर
15.आवर्त सारणी का जनक किसे माना जाता है?
A. दिमित्री मेंडलीफB. एन्‍टोनी लेवोसीयरC. जॉन न्‍यूलैंड्सD. हेनरी मोसली
16.आधुनिक आवर्त सारणी के 5वें आवर्त में कितने तत्त्व हैं ?
A. 2B. 8C. 18D. 36
17.आवर्त सारणी में एक समूह के तत्त्व
A. सामान रासायनिक गुण रखते हैंB. क्रमागत परमाणु क्रमांक रखते हैंC. समभारिक होते हैंD. समस्थानिक होते हैं
18.आधुनिक आवर्त सारणी में 18 समूह और 7 आवर्त होते हैं | उस तत्व की परमाणु संख्या क्या है, जिसे तीसरे समूह और चौथे आवर्त में रखा गया है?
A. 23B. 21C. 19D. 11
19.आवर्त सारणी में समान तत्वों के समूह की सामान्य विशेषता क्या होती है?
A. बाह्रतम कक्ष में इलेक्ट्रानB. कुल इलेक्ट्रोनों की संख्याC. कुल प्रोटोनों की संख्याD. परमाणु भार
20.अवर्त सारणी में निम्नलिखित में से कौन-सी धातु सबसे भारी होती हैं ?
A. OsB. PtC. CaD. w
21.निम्नलिखित में से कौन सा आधुनिक आवर्त सारणी के आधार पर है?
A. एटॉमिक मासB. एटॉमिक संख्याC. एटॉमिक साइज़D. एटॉमिक वॉल्यूम
22.निम्नलिखित में से कौन सा एक, आवर्ती गुण धर्म नहीं है, अर्थात् आवर्त सारणी में एक ओर से दूसरी ओर चलने पर यह कोई प्रवृत्ति नहीं दर्शाता ?
A. परमाण्वीय आमपाB. संयोजकताC. रेडियोएक्टिवताD. विद्युत ट्टणात्मकता